Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.573
Filtrar
1.
J Agric Food Chem ; 72(19): 11153-11163, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695891

RESUMO

Maillard reaction (MR) plays a pivotal role in the food flavor industry, including a cascade of reactions starting with the reaction between amino compounds and reducing sugars, and thus provides various colors and flavors. A new group of volatile compounds called pyrazinones found in MR are now getting more attention. In this study, eight volatile pyrazinones were found in the asparagine MR systems, in which 3,5-dimethyl- and 3,6-dimethyl-2(1H)-pyrazinones were reported for the first time. The major formation pathways were the reactions between asparagine and α-dicarbonyls, with decarboxylation as a critical step. Besides, novel alternative pathways involving alanine amidation and successive reactions with α-dicarbonyls were explored and successfully formed eight pyrazinones. The major differences between alanine-amidated pathways and decarboxylation pathways are the amidation step and absence of the decarboxylation step. For the alanine-amidated pathways, the higher the temperature, the better the amidation effect. The optimal amidation temperature was 200 °C in this study. The reaction between the alanine amide and α-dicarbonyls after amidation can happen at low temperatures, such as 35 and 50 °C, proposing the possibility of pyrazinone formation in real food systems. Further investigations should be conducted to investigate volatile pyrazinones in various food systems as well as the biological effects and kinetic formation differences of the volatile pyrazinones.


Assuntos
Alanina , Asparagina , Reação de Maillard , Pirazinas , Compostos Orgânicos Voláteis , Pirazinas/química , Alanina/química , Asparagina/química , Compostos Orgânicos Voláteis/química , Aromatizantes/química
2.
Org Lett ; 26(18): 3991-3996, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38691578

RESUMO

Peptide modification by C(sp3)-H functionalization of residues at the internal positions remains underdeveloped due to the inhibitory effect of backbone amides. In this study, using histidine (His) as an endogenous directing group, we developed a novel method for the ß-C(sp3)-H functionalization of alanine (Ala) at diverse positions of peptides. Through this approach, a wide range of linear peptides were modified on the side-chain of Ala adjacent to His to afford the functionalized peptides in moderate to good yield and excellent position selectivity. Furthermore, conjugation of peptides with functional molecules such as glucuronide, oleanolic acid, dipeptide, and fluorophore derivatives was achieved.


Assuntos
Alanina , Histidina , Peptídeos , Alanina/química , Histidina/química , Peptídeos/química , Estrutura Molecular
3.
J Med Chem ; 67(9): 7470-7486, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38690769

RESUMO

We assessed factors that determine the tissue-specific bioactivation of ProTide prodrugs by comparing the disposition and activation of remdesivir (RDV), its methylpropyl and isopropyl ester analogues (MeRDV and IsoRDV, respectively), the oral prodrug GS-621763, and the parent nucleotide GS-441524 (Nuc). RDV and MeRDV yielded more active metabolite remdesivir-triphosphate (RDV-TP) than IsoRDV, GS-621763, and Nuc in human lung cell models due to superior cell permeability and higher susceptivity to cathepsin A. Intravenous administration to mice showed that RDV and MeRDV delivered significantly more RDV-TP to the lung than other compounds. Nevertheless, all four ester prodrugs exhibited very low oral bioavailability (<2%), with Nuc being the predominant metabolite in blood. In conclusion, ProTides prodrugs, such as RDV and MeRDV, are more efficient in delivering active metabolites to the lung than Nuc, driven by high cell permeability and susceptivity to cathepsin A. Optimizing ProTides' ester structures is an effective strategy for enhancing prodrug activation in the lung.


Assuntos
Adenosina/análogos & derivados , Antivirais , Catepsina A , Pulmão , Pró-Fármacos , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Animais , Camundongos , Antivirais/farmacocinética , Antivirais/farmacologia , Antivirais/química , Antivirais/metabolismo , Humanos , Catepsina A/metabolismo , Pulmão/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacocinética , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/química , Alanina/farmacocinética , Alanina/metabolismo , Alanina/farmacologia , Permeabilidade , Ariloxifosforamidatos
4.
J Phys Chem B ; 128(16): 3856-3869, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38606880

RESUMO

We have studied in silico the effect of proline, a model cosolvent, on local and global friction coefficients in (un)folding of several typical alanine-based α-helical peptides. Local friction is related to dwell times of a single, ensemble-averaged hydrogen bond (HB) within each peptide. Global friction is related to energy dissipated in a series of configurational changes of each peptide experienced by increasing the number of HBs during folding. Both of these approaches are important in relation to future atomic force microscopic-based measurements of internal friction via force-clamp single-molecule force spectroscopy. Molecular dynamics (MD) simulations for six peptides, namely, ALA5, ALA8, ALA15, ALA21, (AAQAA)3, and H2N-GN(AAQAA)2G-COONH2, have been conducted at 2 and 5 M proline solutions in water. Using previously obtained MD data for these peptides in pure water as well as upgraded theoretical models, we obtained variations of local and global internal friction coefficients as a function of solution viscosity. The results showed the substantial role of proline in stabilizing the folded state and slowing the overall folding dynamics. Consequently, larger friction coefficients were obtained at larger viscosities. The local and global internal friction, i.e., respective, friction coefficients approximated to zero viscosity, was also obtained. The evolution of friction coefficients with viscosity was weakly dependent on the number of concurrent folding pathways but was rather dominated by a stabilizing effect of proline on the folded states. Obtained values of local and global internal friction showed qualitatively similar results and a clear dependency on the structure of the studied peptide.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Prolina , Dobramento de Proteína , Prolina/química , Peptídeos/química , Conformação Proteica em alfa-Hélice , Alanina/química , Ligação de Hidrogênio , Fricção
5.
Molecules ; 29(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38675600

RESUMO

The natural pesticide phenazine-1-carboxylic acid (PCA) is known to lack phloem mobility, whereas Metalaxyl is a representative phloem systemic fungicide. In order to endow PCA with phloem mobility and also enhance its antifungal activity, thirty-two phenazine-1-carboxylic acid-N-phenylalanine esters conjugates were designed and synthesized by conjugating PCA with the active structure N-acylalanine methyl ester of Metalaxyl. All target compounds were characterized by 1H NMR, 13C NMR and HRMS. The antifungal evaluation results revealed that several target compounds exhibited moderate to potent antifungal activities against Sclerotinia sclerotiorum, Bipolaris sorokiniana, Phytophthora parasitica, Phytophthora citrophthora. In particular, compound F7 displayed excellent antifungal activity against S. sclerotiorum with an EC50 value of 6.57 µg/mL, which was superior to that of Metalaxyl. Phloem mobility study in castor bean system indicated good phloem mobility for the target compounds F1-F16. Particularly, compound F2 exhibited excellent phloem mobility; the content of compound F2 in the phloem sap of castor bean was 19.12 µmol/L, which was six times higher than Metalaxyl (3.56 µmol/L). The phloem mobility tests under different pH culture solutions verified the phloem translocation of compounds related to the "ion trap" effect. The distribution of the compound F2 in tobacco plants further suggested its ambimobility in the phloem, exhibiting directional accumulation towards the apical growth point and the root. These results provide valuable insights for developing phloem mobility fungicides mediated by exogenous compounds.


Assuntos
Alanina , Alanina/análogos & derivados , Fenazinas , Fenazinas/química , Fenazinas/farmacologia , Fenazinas/síntese química , Alanina/química , Alanina/farmacologia , Phytophthora/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Floema/metabolismo , Floema/efeitos dos fármacos , Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Desenho de Fármacos , Ésteres/química , Ésteres/farmacologia , Ésteres/síntese química
6.
Langmuir ; 40(17): 8971-8980, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38629792

RESUMO

Cells require oligonucleotides and polypeptides with specific, homochiral sequences to perform essential functions, but it is unclear how such oligomers were selected from random sequences at the origin of life. Cells were probably preceded by simple compartments such as fatty acid vesicles, and oligomers that increased the stability, growth, or division of vesicles could have thereby increased in frequency. We therefore tested whether prebiotic peptides alter the stability or growth of vesicles composed of a prebiotic fatty acid. We find that three of 15 dipeptides tested reduce salt-induced flocculation of vesicles. All three contain leucine, and increasing their length increases the efficacy. Also, leucine-leucine but not alanine-alanine increases the size of vesicles grown by multiple additions of micelles. In a molecular simulation, leucine-leucine docks to the membrane, with the side chains inserted into the hydrophobic core of the bilayer, while alanine-alanine fails to dock. Finally, the heterochiral forms of leucine-leucine, at a high concentration, rapidly shrink the vesicles and make them leakier and less stable to high pH than the homochiral forms do. Thus, prebiotic peptide-membrane interactions influence the flocculation, growth, size, leakiness, and pH stability of prebiotic vesicles, with differential effects due to sequence, length, and chirality. These differences could lead to a population of vesicles enriched for peptides with beneficial sequence and chirality, beginning selection for the functional oligomers that underpin life.


Assuntos
Peptídeos , Peptídeos/química , Alanina/química , Estereoisomerismo , Células Artificiais/química , Leucina/química , Origem da Vida , Dipeptídeos/química
7.
Angew Chem Int Ed Engl ; 63(19): e202403271, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38497510

RESUMO

Unnatural amino acids, and their synthesis by the late-stage functionalization (LSF) of peptides, play a crucial role in areas such as drug design and discovery. Historically, the LSF of biomolecules has predominantly utilized traditional synthetic methodologies that exploit nucleophilic residues, such as cysteine, lysine or tyrosine. Herein, we present a photocatalytic hydroarylation process targeting the electrophilic residue dehydroalanine (Dha). This residue possesses an α,ß-unsaturated moiety and can be combined with various arylthianthrenium salts, both in batch and flow reactors. Notably, the flow setup proved instrumental for efficient scale-up, paving the way for the synthesis of unnatural amino acids and peptides in substantial quantities. Our photocatalytic approach, being inherently mild, permits the diversification of peptides even when they contain sensitive functional groups. The readily available arylthianthrenium salts facilitate the seamless integration of Dha-containing peptides with a wide range of arenes, drug blueprints, and natural products, culminating in the creation of unconventional phenylalanine derivatives. The synergistic effect of the high functional group tolerance and the modular characteristic of the aryl electrophile enables efficient peptide conjugation and ligation in both batch and flow conditions.


Assuntos
Alanina , Alanina/análogos & derivados , Peptídeos , Peptídeos/química , Peptídeos/síntese química , Catálise , Alanina/química , Processos Fotoquímicos , Estrutura Molecular
8.
J Agric Food Chem ; 72(15): 8760-8773, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38536213

RESUMO

Roasting is pivotal for enhancing the flavor of Wuyi rock tea (WRT). A study investigated a novel compound that enhances the umami taste of WRT. Metabolomics of Shuixian tea (SXT) and Rougui tea (RGT) under light roasting (LR), medium roasting (MR), and heavy roasting (HR) revealed significant differences in nonvolatiles compounds. Compared LR reducing sugars and amino acids notably decreased in MR and HR, with l-alanine declining by 69%. Taste-guided fractionation identified fraction II-B as having high umami and sweet intensities. A surprising taste enhancer, N-(1-carboxyethyl)-6-(hydroxymethyl) pyridinium-3-ol (alapyridaine), was discovered and identified. It formed via the Maillard reaction, positively correlated with roasting in SXT and RGT. Alapyridaine levels were highest in SXT among the five oolong teas. Roasting tea with glucose increased alapyridaine levels, while EGCG inhibited its formation. HR-WRT exhibited enhanced umami and sweet taste, highlighting alapyridaine's impact on WRT's flavor profile. The formation of alapyridaine during the roasting process provides new insights into the umami and sweet perception of oolong tea.


Assuntos
Alanina/análogos & derivados , Reação de Maillard , Piridinas , Paladar , Alanina/química , Chá
9.
Biomacromolecules ; 25(4): 2554-2562, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38426942

RESUMO

Our group recently developed a family of side-chain amino acid-functionalized poly(S-alkyl-l-homocysteines), Xaa-CH (Xaa = generic amino acid), which possess the ability to form environmentally responsive coacervates in water. In an effort to further study how the molecular structure affects polypeptide coacervate formation, we prepared side-chain amino acid-functionalized poly(S-alkyl-rac-cysteines), Xaa-rac-C, via post-polymerization modification of poly(dehydroalanine), ADH. The use of the ADH platform allowed straightforward synthesis of a diverse range of side-chain amino acid-functionalized polypeptides via direct reaction of unprotected l-amino acid 2-mercaptoethylamides with ADH. Despite their differences in the main-chain structure, we found that Xaa-rac-C can form coacervates with properties similar to those seen with Xaa-CH. These results suggest that the incorporation of side-chain amino acids onto polypeptides may be a way to generally favor coacervation. The incorporation of l-methionine in Met-rac-C allowed the preparation of coacervates with improved stability against high ionic strength media. Further, the presence of additional thioether groups in Met-rac-C resulted in an increased solubility change upon oxidation allowing facile reversible redox switching of coacervate formation in aqueous media.


Assuntos
Alanina/análogos & derivados , Aminoácidos , Peptídeos , Peptídeos/química , Alanina/química , Cisteína
10.
Anal Chem ; 96(4): 1767-1773, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38232355

RESUMO

Lanthipeptides make up a large group of natural products that belong to the ribosomally synthesized and post-translationally modified peptides (RiPPs). Lanthipeptides contain lanthionine and methyllanthionine bis-amino acids that have varying stereochemistry. The stereochemistry of new lanthipeptides is often not determined because current methods require equipment that is not standard in most laboratories. In this study, we developed a facile, efficient, and user-friendly method for detecting lanthipeptide stereochemistry, utilizing advanced Marfey's analysis with detection by liquid chromatography coupled with mass spectrometry (LC-MS). Under optimized conditions, 0.05 mg of peptide is sufficient to characterize the stereochemistry of five (methyl)lanthionines of different stereochemistry using a simple liquid chromatography setup, which is a much lower detection limit than current methods. In addition, we describe methods to readily access standards of the three different methyllanthionine stereoisomers and two different lanthionine stereoisomers that have been reported in known lanthipeptides. The developed workflow uses a commonly used nonchiral column system and offers a scalable platform to assist antimicrobial discovery. We illustrate its utility with an example of a lanthipeptide discovered by genome mining.


Assuntos
Peptídeos , Sulfetos , Peptídeos/química , Sulfetos/química , Alanina/química , Cromatografia Líquida
11.
J Am Chem Soc ; 146(9): 5823-5833, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38174701

RESUMO

The biological significance of self-assembled protein filament networks and their unique mechanical properties have sparked interest in the development of synthetic filament networks that mimic these attributes. Building on the recent advancement of autoaccelerated ring-opening polymerization of amino acid N-carboxyanhydrides (NCAs), this study strategically explores a series of random copolymers comprising multiple amino acids, aiming to elucidate the core principles governing gelation pathways of these purpose-designed copolypeptides. Utilizing glutamate (Glu) as the primary component of copolypeptides, two targeted pathways were pursued: first, achieving a fast fibrillation rate with lower interaction potential using serine (Ser) as a comonomer, facilitating the creation of homogeneous fibril networks; and second, creating more rigid networks of fibril clusters by incorporating alanine (Ala) and valine (Val) as comonomers. The selection of amino acids played a pivotal role in steering both the morphology of fibril superstructures and their assembly kinetics, subsequently determining their potential to form sample-spanning networks. Importantly, the viscoelastic properties of the resulting supramolecular hydrogels can be tailored according to the specific copolypeptide composition through modulations in filament densities and lengths. The findings enhance our understanding of directed self-assembly in high molecular weight synthetic copolypeptides, offering valuable insights for the development of synthetic fibrous networks and biomimetic supramolecular materials with custom-designed properties.


Assuntos
Hidrogéis , Peptídeos , Hidrogéis/química , Peptídeos/química , Aminoácidos , Ácido Glutâmico/química , Alanina/química
12.
Anal Chem ; 96(5): 1906-1912, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38251936

RESUMO

Salivary d-alanine (d-Ala) and d-proline (d-Pro) are of concern for their potential in the noninvasive diagnosis of gastric cancer (GC). Most reports have succeeded in determining the total concentration of d-Ala and d-Pro. However, for personalized diagnosis and better elucidation of the underlying specific correlation of d-Ala (or d-Pro) with GC, it is desirable to determine the specific concentration of d-Ala or d-Pro. Herein, we propose an enantiomer-specific tandem assay of d-Ala based on the colorimetric reaction between 2,4-dinitrophenylhydrazine and pyruvic acid generated from the deamination of d-Ala catalyzed by d-amino acid oxidase, which is easily distinguished from l-form amino acids, d-Pro, and many other species. A linear concentration range is established from 20 to 400 µmol/L with a limit of detection of 1.01 µmol/L. Real saliva sample tests reveal that the levels of d-Ala in GC cases are remarkably higher than those in healthy individuals, which offers a simple and low-cost strategy for GC diagnosis. Simultaneously, the total concentrations of d-Ala and d-Pro in saliva are determined. Hence, the concentration of d-Pro and the proportion of d-Ala could be calculated, which further provides more molecule- and individual-specific information. This research may offer a convenient method for noninvasive diagnosis of GC and pave a new route to explore the potentials of rare d-form amino acids in disease diagnosis and treatment.


Assuntos
Alanina , Neoplasias Gástricas , Humanos , Alanina/química , Neoplasias Gástricas/diagnóstico , Colorimetria , Aminoácidos , Prolina
13.
J Mol Graph Model ; 126: 108637, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37801810

RESUMO

Amino acids are required to make protein. The deficiency of amino acids leads to a lack of sleep and mood. Among various amino acids, we conducted the adsorption studies of alanine and asparagine amino acids on a novel one-dimensional material, chair graphene nanotube. The stability of the chair graphene nanotube is ensured with the negative formation energy, which is -6.490 eV/atom. The energy band gap of bare chair graphene nanotube is 1.022 eV, which possesses a semiconductor nature. The stable chair graphene nanotube is used as adsorbing material for alanine and asparagine amino acids. Besides, alanine and asparagine are physisorbed on chair graphene nanotubes that are confirmed by the range of adsorption energy from -0.107 eV to -0.718 eV. Upon adsorption of amino acids, the charge transfer outcome shows that chair graphene nanotubes behave as donors of electrons to alanine and asparagine. Further, the changes in the band gap of the chair graphene nanotube are noticed from the results of band structure and PDOS spectrum. The changes in the electron density also reveal the changes in the electronic properties of the chair graphene nanotube owing to alanine and asparagine sorption. The proposed report portrays the adsorption attributes of alanine and asparagine amino acids on 1D chair graphene nanotubes.


Assuntos
Grafite , Nanotubos , Aminoácidos/química , Alanina/química , Asparagina , Grafite/química , Nanotubos/química
14.
J Biochem ; 175(4): 439-446, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38153270

RESUMO

Aspartate/alanine exchange transporter (AspT) is a secondary transporter isolated from the lactic acid bacterium Tetragenococcus halophilus D10 strain. This transporter cooperates with aspartate decarboxylase to produce proton-motive force through decarboxylative phosphorylation. A method that successfully analyzes the AspT mechanism could serve as a prototype for elucidating the substrate transport mechanism of other exchange transporters; therefore, the purpose of this study was to search for conditions that improve the thermal stability of AspT for 3D structure analysis. We used the fluorescence size-exclusion chromatography-based thermostability assay to evaluate conditions that contribute to AspT stability. We found that the AspT thermostability was enhanced at pH 5.0 to 6.0 and in the presence of Na+ and Li+. Pyridoxal phosphate, a coenzyme of aspartate decarboxylase, also had a thermostabilizing effect on AspT. Under the conditions obtained from these results, it was possible to increase the temperature at which 50% of dimer AspT remained by 14°C. We expect these conditions to provide useful information for future structural analysis of AspT.


Assuntos
Alanina , Ácido Aspártico , Alanina/química , Proteínas de Membrana Transportadoras , Enterococcaceae
15.
J Chem Theory Comput ; 20(1): 436-450, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38151233

RESUMO

Representation learning (RL) is a universal technique for deriving low-dimensional disentangled representations from high-dimensional observations, aiding in a multitude of downstream tasks. RL has been extensively applied to various data types, including images and natural language. Here, we analyze molecular dynamics (MD) simulation data of biomolecules in terms of RL. Currently, state-of-the-art RL techniques, mainly motivated by the variational principle, try to capture slow motions in the representation (latent) space. Here, we propose two methods based on an alternative perspective on the disentanglement in the latent space. By disentanglement, we here mean the separation of underlying factors in the simulation data, aiding in detecting physically important coordinates for conformational transitions. The proposed methods introduce a simple prior that imposes temporal constraints in the latent space, serving as a regularization term to facilitate the capture of disentangled representations of dynamics. Comparison with other methods via the analysis of MD simulation trajectories for alanine dipeptide and chignolin validates that the proposed methods construct Markov state models (MSMs) whose implied time scales are comparable to those of the state-of-the-art methods. Using a measure based on total variation, we quantitatively evaluated that the proposed methods successfully disentangle physically important coordinates, aiding the interpretation of folding/unfolding transitions of chignolin. Overall, our methods provide good representations of complex biomolecular dynamics for downstream tasks, allowing for better interpretations of the conformational transitions.


Assuntos
Dipeptídeos , Simulação de Dinâmica Molecular , Dipeptídeos/química , Conformação Molecular , Alanina/química
16.
Org Lett ; 26(1): 321-326, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38147353

RESUMO

Herein, the trisaccharide repeating unit of Fusobacterium nucleatum ssp. animalis ATCC 51191, which is used to develop oncomicrobial vaccines, was efficiently synthesized for the first time. The synthetic approach featured the following: (i) construction of the 1,2-cis-glycosidic linkage using the large steric hindrance of a phthalimide group at C4 of fucosamine; (ii) synthesis of the trisaccharide via a linear [2 + 1] glycosylation strategy; and (iii) installation of l-alanine using hexafluorophosphate azabenzotriazole tetramethyl uronium as a promoter.


Assuntos
Fusobacterium nucleatum , Trissacarídeos , Fusobacterium , Antígenos O , Alanina/química , Hidrocarbonetos Fluorados
17.
Artigo em Inglês | MEDLINE | ID: mdl-37976942

RESUMO

D-amino acids (D-AAs) are important signaling molecules due to their ability to bind ionotropic N-methyl-D-aspartate receptors. D-serine (D-Ser), D-alanine (D-Ala), and D-aspartate (D-Asp) have been found individually in the endocrine portion of the pancreas, the islets of Langerhans, and/or their secretions. However, there has been no report of a comprehensive assessment of D-AAs in islet secretions. To evaluate the release of these compounds, the effectiveness of both 1-(9-fluorenyl)-ethyl chloroformate (FLEC reagent) and 1-fluoro-2,4-dinitrophenyl-5-L-alanine amide (Marfey's reagent, MR) in separation of D/L-AA enantiomeric pairs in islet-specific buffers were evaluated. MR-derivatized D/L AAs showed greater than baseline resolution (Rs ≥ 1.5) of 13 enantiomeric pairs when using a non-linear gradient and an acidic mobile phase system, while FLEC-derivatized AAs exhibited limited resolution on both biphenyl and C18 columns. The optimized MR method yielded highly reproducible separations with retention times less than 1% RSD. Excellent linearity between the analyte concentrations and response (R2 > 0.98) were obtained, with less than 15% RSD for all analyte responses. Most analytes had an LOD at or below 100 nM, except for L-Ala (200 nM). The optimized MR method was used to quantify D-AAs in secretions of 150 murine islets after incubation in 3- and 20-mM glucose. In response to both solutions, D-Ser and D-glutamine were tentatively identified via comparison of retention time and quantifier-to-qualifer ion ratios with standards, and from spiking experiments. Both were secreted in low quantities which did not differ significantly in either low (D-Ser: 44 ± 2 fmol islet-1h-1; D-Gln: 300 ± 100 fmol islet-1h-1) or high (D-Ser: 23 ± 1 fmol islet-1h-1; D-Gln: 120 ± 50 fmol islet-1h-1) glucose across 3 biological replicates. The method developed is robust and can be applied to further examine the release of D-AAs and their potential roles in islet physiology.


Assuntos
Aminoácidos , Ilhotas Pancreáticas , Animais , Camundongos , Aminoácidos/análise , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Alanina/química , Glucose , Estereoisomerismo , Cromatografia Líquida de Alta Pressão/métodos
18.
Org Biomol Chem ; 21(48): 9562-9571, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38009076

RESUMO

Two short pentapeptides rich in α-aminoisobutyric acid (Aib) residues have been shown to act as enantioselective organocatalysts for the conjugate addition of nucleophiles to nitroolefins. An L-alanine terminated peptide, (Aib)4(L-Ala)NHtBu, which has neither functionalised sidechains nor a highly designed reactive site, used an exposed N-terminal primary amine and the amide bonds of the backbone to mediate catalysis. Folding of this peptide into a 310 helical structure was observed by crystallography. Folding into a helix relays the conformational preference of the chiral alanine residue at the C-terminus to the primary amine at the N-terminus, 0.9 nm distant. The chiral environment and defined shape produced by the 310 helix brings the amine site into proximity to two exposed amide NHs. Reaction scope studies implied that the amine acts as a Brønsted base and the solvent-exposed NH groups of the helix, shown to weakly bind ß-nitrostyrene, are needed to obtain an enantiomeric excess. Replacement of L-alanine with D-phenylalanine gave (Aib)4(D-Phe)NHtBu, a peptide that now catalysed the benchmark reaction with the opposite enantioselectivity. These studies show how achiral residues can play a key role in enantioselective catalysis by peptides through the promotion of folding.


Assuntos
Amidas , Peptídeos , Estereoisomerismo , Modelos Moleculares , Peptídeos/química , Fenilalanina/química , Alanina/química , Catálise , Aminas , Conformação Proteica
19.
ACS Chem Biol ; 18(9): 2039-2049, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582223

RESUMO

Nuclear magnetic resonance (NMR) studies of large biomolecular machines and highly repetitive proteins remain challenging due to the difficulty of assigning frequencies to individual nuclei. Here, we present an efficient strategy to address this challenge by engineering a Pyrococcus horikoshii tRNA/alanyl-tRNA synthetase pair that enables the incorporation of up to three isotopically labeled alanine residues in a site-specific manner using in vitro protein expression. The general applicability of this approach for NMR assignment has been demonstrated by introducing isotopically labeled alanines into four distinct proteins: huntingtin exon-1, HMA8 ATPase, the 300 kDa molecular chaperone ClpP, and the alanine-rich Phox2B transcription factor. For large protein assemblies, our labeling approach enabled unambiguous assignments while avoiding potential artifacts induced by site-specific mutations. When applied to Phox2B, which contains two poly-alanine tracts of nine and twenty alanines, we observed that the helical stability is strongly dependent on the homorepeat length. The capacity to selectively introduce alanines with distinct labeling patterns is a powerful tool to probe structure and dynamics of challenging biomolecular systems.


Assuntos
Alanina , Proteínas , Alanina/química , Ressonância Magnética Nuclear Biomolecular , Proteínas/metabolismo
20.
J Chem Phys ; 159(3)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37458344

RESUMO

Determining collective variables (CVs) for conformational transitions is crucial to understanding their dynamics and targeting them in enhanced sampling simulations. Often, CVs are proposed based on intuition or prior knowledge of a system. However, the problem of systematically determining a proper reaction coordinate (RC) for a specific process in terms of a set of putative CVs can be achieved using committor analysis (CA). Identifying essential degrees of freedom that govern such transitions using CA remains elusive because of the high dimensionality of the conformational space. Various schemes exist to leverage the power of machine learning (ML) to extract an RC from CA. Here, we extend these studies and compare the ability of 17 different ML schemes to identify accurate RCs associated with conformational transitions. We tested these methods on an alanine dipeptide in vacuum and on a sarcosine dipeptoid in an implicit solvent. Our comparison revealed that the light gradient boosting machine method outperforms other methods. In order to extract key features from the models, we employed Shapley Additive exPlanations analysis and compared its interpretation with the "feature importance" approach. For the alanine dipeptide, our methodology identifies ϕ and θ dihedrals as essential degrees of freedom in the C7ax to C7eq transition. For the sarcosine dipeptoid system, the dihedrals ψ and ω are the most important for the cisαD to transαD transition. We further argue that analysis of the full dynamical pathway, and not just endpoint states, is essential for identifying key degrees of freedom governing transitions.


Assuntos
Dipeptídeos , Sarcosina , Conformação Molecular , Dipeptídeos/química , Solventes , Alanina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA